WVMN Class Description

Title: Geology

Introduce the student to rocks, minerals, and fossils, especially those most

Objectives: likely to be encountered in West Virginia, and their interpretation in the light of

geological history

Class type: Core curriculum

Time: 3 hours

Optimal season: Spring, summer, fall

Materials: Rock and mineral samples, dilute hydrochloric (muriatic) acid, hand lens.

Expected outcomes: The student will gain a basic understanding of

1. the geological history of West Virginia

- 2. the three major rock types and some common minerals.
- 3. using clues such as particle size, shape, and color and fossils to determine the environment in which sedimentary rocks were deposited.
- 4. how specific rock layers are named.
- 5. how erosion occurs and how it shapes landscapes.
- 6. some common West Virginia fossils and how they were formed.

WVMN Class Outline

- 1. Observations of deposits in today's environments is the key to deciphering the state's ancient geologic history
- 2. Effect of plate tectonics on West Virginia (use West Virginia shaded relief map)
 - a. North America part of Pangaea, with West Virginia near equator for millions of years
 - b. Collision of North America and Africa caused folding of rock layers
 - Anticlines
 - Synclines
 - Joints and faults
 - c. Stream erosion created the Mountain State
 - Erosion of flat-lying rock layers
 - Erosion of folds
- 3. Minerals make up rocks (use mineral samples)
 - a. Two common minerals compared
 - Calcite: rhombohedral crystal, hardness 3, fizzes with weak hydrochloric acid, in limestone
 - Quartz: hexagonal crystal, hardness 7, does not react with hydrochloric acid, in sandstone, shale and conglomerates
- 4. Sedimentary rocks
 - a. 99% of WV rocks are sedimentary
 - b. Sediment (particles) are compressed or naturally cemented together
 - c. Mostly deposited by water in layers, oldest on bottom
 - d. Rocks are named for their particle size and shape
 - Shale: mud-sized
 - Sandstone: sand-sized
 - Conglomerate: mix of mud- to gravel-sized, gravel particles rounded in shape
 - Limestone: calcite precipitated in seas or lakes, or animal or plant parts
 - Coal: from compressed plant materials
- 5. Clues to environment of deposition (where sediments were originally deposited)
 - a. Particle size indicates speed of water
 - Shale: quiet water where tiny particles can settle out

- Sandstone: moderately fast-moving water
- Conglomerate: very fast-moving water
- b. Particle shape
 - Rounded: corners knocked off by abrasion in moving water
 - Angular: gravity (landslide) deposit without water flow
- c. Color
 - Red, pink, brown, tan: rusted (oxidized) iron
 - Green: iron not exposed to air
 - Purple: manganese exposed to air
 - Black: carbon-rich (organic)
- d. Limestone: lake or ocean, thick limestones are tropical ocean reef deposits
- e. Coal: tropical swamp with rapid plant growth, no tree rings
- f. Fossils: most definitive clue, evidence of plants or animals, each of which lived in a specific environment
 - Shells
 - Bones
 - Plants
 - Trace fossils (traces of an organism's activity: burrows, trails, tracks, borings)
- 6. Interpreting ancient environments
 - a. 300-million-year-old landscape (birds-eye view)
 - b. From the Piedmont to the deep ocean (horizontal view) Sea level rise or fall
- 7. Erosion
 - a. Resistance to erosion
 - Cement: silica is strongest, iron oxide next, calcite weakest (soluble)
 - Thickness of layers (beds): thicker layers harder to erode
 - Rock type
 - Sandstone and conglomerate resist erosion, form cliffs
 - Shale easily eroded, makes slopes and valleys
 - Limestone slowly dissolves in naturally acidic rainwater, makes valleys
- 8. Naming rock layers (named after the place where they were first studied)
 - a. Period: geologic period, see geologic column and time chart
 - b. Series: 2 or more Groups
 - c. Group: 2 or more Formations
 - d. Formation: can include more than one rock type, has distinctive easily identifiable features like color or fossils, thick enough to be mapped on 7.5 minute topographic map